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Abstract. In this paper, we present a new Integer Program (IP) for
the Air Traffic Flow Management (ATFM) problem. The model we pro-
pose provides a complete representation of all the phases of each flights,
i.e., the phase of taking-off, of cruising and of landing; suggesting all the
actions to be implemented to achieve the goal of safe, efficient, and ex-
peditious aircraft movement. The distinctive feature of the model is that
it allows rerouting decisions. These decisions are formulated by means
of “local” conditions, which allow us to represent such decisions in a
very compact way by only introducing new constraints. Moreover, to
strengthen the polyhedral structure of the underlying relaxation, we also
present three classes of valid inequalities.

We report short computational times (less than 15 minutes) on in-
stances of the size of the US air traffic control system that make it
realistic that our approach can be used as the main engine of managing
air traffic in the US.

1 Introduction

The continuous growth of the air transportation industry have put an enormous
strain on the aviation system. Congestion phenomena are persistent and arise
almost on a daily basis as a consequence of bad weather conditions which cause
sudden capacity reductions. In the year 2000, approximately one out of every four
flights in the United States was delayed or canceled, [6]. The resulting delays have
a significant economic impact. The Air Transport Association has estimated that
system delays drove an estimated $5.9 billion in direct operating costs for United
States airlines in 2005. Similar figures have been shown by European airlines.

As a result, air traffic flow management (ATFM) has become increasingly cru-
cial. ATFM attempts to prevent local demand-capacity imbalances by adjusting
the flows of aircraft on a national or regional basis. Until now, the ATFM have
been mainly focusing on airports’ congestion. On this subject, the most popular
approach, by far, has been the allocation of ground delays to departing flights, i.e.,
postponing their departure time. From the paper by Odoni [9], who was the first to
formalize this problem, a plethora of models and algorithms have been developed
to detect optimal strategies to assign ground delays to flights (see [1] and [6]).
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However, it has become increasingly evident that very significant delays and
system throughput degradations have arisen from en-route airspace problems and
limitations. The problem posed by the en-route sector capacity constraints is per-
sistent and may take at least one more decade to resolve [4]. One of the implica-
tions of the simultaneous presence of airport and en-route airspace constraints is
that devising good strategies is a much more complicated task. Any mathemati-
cal model developed for this purpose has to consider a true network of capacitated
elements, en-route sectors and airports [8]. Moreover, a larger set of options to re-
solve congestion is available: ground holding, airborne holding, miles-in-tails and
rerouting, i.e., the possibility of reroute a flight on a different flight path if the
current route passes through a region that unexpectedly becomes congested.

As opposed to the airport congestion case, the research literature dealing
with en-route congestion is quite sparse. One of the first attempts to include
in the ATFM problem en-route capacity restrictions was by Helme [5], who
proposed a multi-commodity minimum-cost flow on a time-space network to
assign airborne and ground delay to aggregate flow of flights, commodities of
the network flow model. While the formulation of this model is straightforward
and easy to understand, its computational performance was rather weak. Lindsay
et al.[7] formulated a disaggregate deterministic 0-1 integer programming models
for deciding ground and airborne holding of individual flights in presence of both
airport and airspace capacity constraints. Bertsimas and Stock [2] presented a
deterministic 0-1 IP model to solve a similar problem. The model decides on the
departure time and sector occupancy time of each aircraft. The model enables
very efficient computation of optimal solutions, since several of the constraints
provide facets of the convex hull of solutions. However this model, as well as
those cited above, does not consider rerouting as an option. It assumes that the
flight path is known in advance and is fixed.

To the best of our knowledge the only work which considers rerouting, at a
least at a macroscopic level, is the work by Bertsimas and Stock Patterson [3].
They presented a dynamic, multi-commodity, integer network-flow model. The
model addressed routing as well as scheduling decisions, but it did not provide
computational performances aligned with the dimensions of real instances.

Modeling rerouting decisions has posed one of the greatest challenges in this
field of research. Our goal is to combine the model “flexibility” in terms of range
of decisions of model presented in [3] with the shown mathematical properties of
the model presented in [2], so that we are able to solve efficiently sized problems.
Herein, we present a mathematical model for the ATFM which includes all the
possible options to resolve air congestion, including rerouting. The scope of the
model is to suggest the time of departure, the route, the time required to cross
each sector and the time of arrivals taking into account the capacity of all sectors
and airports. The main feature of the model is the formulation of rerouting deci-
sions in a very compact way. With respect to previous models, the methodology
we presented does not require any additional variables, but it only introduces
new constraints. These constraints implement local routing conditions that are
sufficient for the purpose of the model. To strengthen the polyhedral structure
of the underlying relaxation, we also present three classes of valid inequalities.
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The paper is organized as follows: In Section 2, we present the mathematical
model for the ATFM problem with rerouting, and three classes of valid inequal-
ities as well. The computational experience is reported in Section 3. Finally,
Section 4 contains conclusions and indications for future research.

2 The Mathematical Model

The mathematical model we present here, is intended to determine how to ad-
just the release time of each flight into the system (time of departure), how to
control its flight speed once in the air and how to reroute it in case of sectors’
congestion along the preferred path. As an underlying model we consider the
model proposed by Bertsimas and Stock [2].

Any origin-destination route is represented as a sequence of sectors flown by
an aircraft. In ATFM models which do not include rerouting as an option, the
sequence of sectors to be flown is pre-determined. To contemplate rerouting in
the mathematical model the set of possible sectors that might be flown has to
be enlarged.

Fig. 1. Given a flight f, the set Lf
i of sectors that follow sector i, and the set of sectors

Pf
i that precede sector j

A key element of the proposed model is the definition of routes. The origin-
destination routes can be represented by digraphs. The set of nodes of the
digraph (Sf ) represents the set of capacitated elements of the airspace, e.g.,
airports and sectors. The set of arcs defines the sequence relations. There is an
arc from a node i to node a j if i and j are contiguous sectors and sector j can be
flown soon after sector i. In Figure 1, three different routes between the airport
of origin and of destination are reported. Within the ATFM framework, we may
suppose, without loss of generality, that the digraph of o-d routes is acyclic. This
allows us to equip the set of sectors with a binary relation, and hence envision
the set of possible routes within the framework of so-called partially ordered set
(poset). The airport of departure and arrival are the minimum and the maxi-
mum elements of the poset respectively. The set of possible routes between the
o-d pair corresponds to the set of maximal chains of the poset. To impose that
each flight follows exactly one route we use local conditions, that can be simply
stated as follows:
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– to fly a sector any aircraft has first to fly one of the previous sectors for at
least a number of time periods equal to their sector flight time;

or equivalently,

– if an aircraft is flying a sector, for at least a number of time periods equal to
its flight time, then immediately after it will fly only one of the subsequent
sectors.

To formally describe these routing conditions we introduce the following addi-
tional notation. For each sector i (∈ Sf ) the subset of sectors which follow i is
denoted by Lf

i ⊂ Sf . Analogously the subset of sectors that precede i is denoted
by Pf

i ⊂ Sf (see Figure 1).
In what follows, we call forks all the sectors followed by more than one sector,

e.g., Sector i and Sector h in Figure 1, while those sectors preceded by more than
one sector are called joints, Sector j in the same figure.

2.1 The Mathematical Formulation

The model’s formulation requires definition of the following notation:

K ≡ set of airports,
S ≡ set of sectors,

Sf ⊆ S ≡ set of sectors that can be flown by flight f,
F ≡ set of flights,
T ≡ set of time periods,
C ≡ set of pairs of flights that are continued,

Pf
i ≡ set of sector i’s subsequent sectors,

Lf
i ≡ set of sector i’s previous sectors,

Dk(t) ≡ departure capacity of airport k at time t,
Ak(t) ≡ arrival capacity of airport k at time t,
Sj(t) ≡ capacity of sector j at time t,

df ≡ scheduled departure time of flight f,
af ≡ scheduled arrival time of flight f,
sf ≡ turnaround time of an airplane after flight f,

origf ≡ airport of departure of flight f,
destf ≡ airport of arrival of flight f,

lfj ≡ number of time units that flight f must spend in sector j,

T f
j = [T f

j , T̄ f
j ] ≡ set of feasible time periods for flight f to arrive in sector j,

T f
j ≡ first time period in the setT f

j ,

T̄ f
j ≡ last time period in the setT f

j .
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The Decision Variables. As mentioned above, the model herein presented is
based on the Bertsimas-Stock model [2] and we use the same decision variables.

wf
j,t =

{
1, if flight f arrives at sector j by time t,
0, otherwise.

This definition of the decision variables (wf
j,t) using “by” instead of “at” is

critical to the understanding of the formulation. If flight f arrives at time t at
sector j then both variable of time period t and subsequent ones will be set to 1
( i.e., wf

j,τ = 1 ∀τ ≥ t).

The Objective Function. As in most other ATFM models in the literature,
the model we propose minimizes a cost function which is a combination of both
airborne-holding delay (AH) and ground holding delay (GH), of the form α ·
AH + GH with α > 1. For convenience, we re-write the objective function as
α · TD − (α − 1) · GH , being TD(= AH + GH) the total delay.

To ensure equity among flights, we include in the objective function cost
coefficients that are a super-linear function of the tardiness of a flight of the form
(t − af )1+ε, with ε close to zero. This will favour the assignment of a moderate
amount of total delay to each of two flights rather than the assignment of a small
amount to one and a large amount to the other.

For each flight f and for each time period t, we define the following cost
coefficients:

cf
td(t) = (t − af )1+ε ≡ total cost of delaying flight f for (t − af ) unit of time,

cf
g (t) = (α − 1)(t − df )1+ε ≡ cost reduction for holding flight f on the ground

for (t − df ) unit of time.

In view of the description above, the objective function is as follows:

Min
�
f∈F

�
���

�

t∈T
f
destf

cf
td(t) · (wf

destf ,t − wf
destf ,t−1) −

�

t∈T
f
origf

cf
g (t) · (wf

origf ,t − wf
origf ,t−1)

�
���

The Constraints∑
f∈F :origf=k

(wf
k,t − wf

k,t−1) ≤ Dk(t) ∀k ∈ K, t ∈ T . (1)

∑
f∈F :destf=k

(wf
k,t − wf

k,t−1) ≤ Ak(t) ∀k ∈ K, t ∈ T . (2)

∑
f∈F :j∈Sf

(wf
j,t −

∑
j′∈Lf

i

wf
j′,t) ≤ Sj(t) ∀j ∈ S, t ∈ T . (3)

wf
j,t ≤

∑
j′∈Pf

j

wf
j′,t−lfj′

∀f ∈ F , t ∈ T f
j , j ∈ Sf : j 	= origf .

(4)
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wf

j,T̄ f
j

≤
∑

j′∈Lf
j

wj′,T̄ f

j′
∀f ∈ F , j ∈ Sf : j 	= destf . (5)

∑
j′∈Lf

j

wf

j′,T̄ f

j′
≤ 1 ∀f ∈ F , j ∈ Sf : j 	= destf . (6)

wf
origf ,t − wf ′

destf′ ,t−sf
≤ 0 ∀(f, f ′) ∈ C, ∀t ∈ T f

k . (7)

wf
j,t−1 − wf

j,t ≤ 0 ∀f ∈ F , j ∈ Sf , t ∈ T f
j . (8)

wf
j,t ∈ {0, 1} ∀f ∈ F , j ∈ Sf , t ∈ T f

j . (9)

The first three sets of constraints take into account the capacities of various
aspects of the system. Constraints (1) ensure that the number of flights which
may take off from airport k at time t, will not exceed the departure capacity of
airport k at time t. Likewise, Constraints (2) ensure that the number of flights
which may arrive at airport k at time t, will not exceed the arrival capacity of
airport k at time t. Finally, Constraints (3) ensure that the sum of all flights
which may feasibly be in Sector j at time t will not exceed the capacity of Sector
j at time t. This difference gives the flights that are in Sector j at time t, since
the first term will be 1 if Flight f has arrived in sector j by time t and the second
term will be 1 if flight f has arrived at one of the next sectors by time t. So, the
only flights that will contribute a value of 1 to this sum are those flights that
have arrived at j and have not yet departed from j by time t. Constraints (4), (5)
and (6) represent connectivity between sectors. They stipulate that a flight can
not arrive at Sector j by time t if it has not arrived to one of the previous sectors
by time t− lfj′ . In other words, a flight cannot enter the next sector on its path
until it has spent lfj′ time units (the minimum possible) traveling through one of
the previous sectors in its current path. Moreover, Constraints (5) and (6) state
that a flight will certainly arrive to one of the subsequent sectors. Constraints
(7) represent connectivity between airports. They handle the cases in which a
flight is continued, i.e., the flight’s aircraft is scheduled to perform a later flight
within some time interval. We will call the first flight f ′ and the following flight
f . Constraints (8) represent connectivity in time. Thus, if a flight has arrived by
time t̃, then wf

j,t has to have a value of 1 for all later time periods (t ≥ t̃).
In what follows, we present three classes of valid inequalities with the scope

of strengthening the formulation.

Proposition 1: If Sector j is a fork, then constraints

wf
j,t ≥

∑
j′∈Lf

j :|Pf

j′ |=1

wf
j′,t+lfj′

∀f ∈ F , t ∈ T f
j .

are valid inequalities for the set of feasible solutions of ATFM.

The inequalities of Proposition 1 state that if a flight f has not crossed Sector
j by time t (wf

j,t = 0), it will not cross any of the subsequent sectors by time
t + lfj′ unless these subsequent sectors can be reached from elsewhere, as in the
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cons.(4)

��
�

w2,t ≤ w1,t−l + w1′,t−l

w3,t ≤ w1,t−l

w4,t ≤ w1,t−l

v.i.1 w3,t + w4,t ≤ w1,t−l

Fig. 2. Valid inequality for a fork node

cons.(5)

��
�

wa,T ≤ wd,T + we,T

wb,T ≤ wd,T

wc,T ≤ wd,T

v.i.2 wb,T + wc,T ≤ wd,T

Fig. 3. Valid inequality for a joint sector

case of Sector 2 in Figure 2. The fork inequalities hold by Constraints (5) and
(8) in case wf

j,t = 1 and by Constraints (4) in case wf
j,t = 0.

Conditions given above can be extended to the case of a joint sector. If a
flight f do not cross Sector j then it have not crossed any of the previous sectors
unless these sectors are also adjacent to other sectors. Hence, let us restrict the
attention to sectors which are only adjacent to the joint sector among all the
previous ones, e.g., sectors b and c of the example in Figure 3.

Proposition 2: If Sector j is a joint, then constraints
∑

j′∈Pf
j :|Lf

j′ |=1

wf

j′,T̄ f

j′
≤ wf

j,T̄ f
j

∀f ∈ F .

are valid inequalities for the set of feasible solutions of ATFM.

The joint inequalities hold by Constraints (5) if wf
j,t = 0 and by Constraints (4)

if wf
j,t = 1.

The network of possible routes, represented by an acyclic graph, naturally
defines a preorder relation on the set of sectors. Each o-d pair corresponds to a
chain of the poset and the Proposition in the sequel immediately follows:

Proposition 3: If A is an antichain for the ordered set defined on Sf , then
constraint ∑

j∈A
wf

j,T̄ f
j

≤ 1.

is a valid inequality for the set of feasible solutions of ATFM (named, antichain
inequality).

These conditions state that each flight follows exactly one route.
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cons.(6)

��
�

wa,T + wb,T ≤ 1
wb,T + wc,T ≤ 1
wc,T + wd,T ≤ 1

a.i. wa,T + wb,T + wc,T + wd,T ≤ 1

Fig. 4. Antichain inequality

Proposition 4: If Sector i is a fork and all the subsequent sectors can be reached
only from Sector i, i.e., {j ∈ Lf

i : |Pf
j | = 1} = Lf

i , then Constraints (5) are
equalities.

3 Computational Experience

In this section, we present the computational experience on the mathematical
model presented in §2.1, including the valid inequalities given in Proposition 1
- Proposition 4. We consider randomly generated instances whose dimension is
comparable to realistic ones. In particular, we consider two sets of instances. The
first one represents the ATFM problem at a regional level, e.g., east-cost or mid-
west US, while the second set, of larger instances, is more representative of the
Nation wide problem. The size of the instance depends on the time horizon, the
time discretization period, the number of sectors and airports and the demand at
each airport. By changing one or all the parameters above, we generate different
size instances.

The airspace is divided into equal size sectors, forming a grid. We also suppose
that the minimum amount of time to fly a sector is the same for all the flights
and for all the sectors. In order to generate instances which are consistent with
the hub-and-spoke operations we cluster airports into hubs and regional airports.
There are no flights connecting two regional airports, i.e., regional airports do
not have direct connections but they are connected to hubs. For each airport,
the demand of flights is randomly generated, drawn from a uniform distribution.
Again with the sake of being more adherent to real operations, we generate hubs’
demands considering both peak and off-peak periods. The average value of the
demand for peak (off-peak) periods is set equal to 15 (8) flights per period. The
nominal capacity of sectors and airports (capacity under good weather condi-
tions) is set to values which allow to accommodate all the air traffic without
incurring in too much air congestion.

To enforce sectors congestion, we suppose a capacity reduction of some sectors.
The reduction of capacity affects 3 sectors at a time, for 5 consecutive time
periods. Afterwards, three contiguous sectors experience capacity reduction for
other 5 consecutive time periods, and so on. In this way, we “simulate” the
effect of a bad weather front which move along a certain direction. We also
consider instances with larger weather front and with different speed (number
of time periods it stays in the sectors before moving forward), without affecting
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the computational performance of the model. Herein we do not report all the
computational results for the sake of brevity.

One of the key elements of our model is the set Sf of sectors that can be
flown by flight f. By default, all the sector on the shortest o-d route of flight
f are included in Sf . If one or more of the sectors on the shortest route is
congested, additional sectors, those contiguous, are included in the set Sf . For
this purpose, sectors are considered congested if their demand exceeds 80% of
the capacity. The number of forks in a o-d pair gives a lower estimate of the
number of possible routes between the origin and the destination. On average,
the number of forks is about 3, meaning that on average we have at least 3
routes between each o-d pair, even though it can be much larger. In a case with
20 forks, we counted 121 o-d routes.

3.1 Regional Size Instances

The computational results for “regional” instances are reported here. These
instances include 20 airports, 10 of which are hubs, and 113 sectors which corre-
spond to about one third of the NAS airspace. We consider a five-hour time hori-
zon subdivided into 20 15-minute time units. All the instances manage roughly
3000 flights. The nominal capacity (capacity under good weather conditions) of
sectors is set to 71 flights per period. Five sets of instances have been consid-
ered, each with a different percentage of flight connections, as reported in the
first column of Table 1 (% of Conn.s). For instance, 50 indicates that half of the
flights have a flight connection. In the first column, it is also reported between
parenthesis the number of flights considered in the instance. Several scenarios for
capacity reduction are tested, from the nominal value to values close to zero (sec-
tor closed), reported in the second column of the Table 1. These two parameters,
i.e., percentage of connections and capacity, univocally identify each instance.

To compute optimal solutions we use the CPLEX-MIP solver 9.0, imple-
mented using AMPL as modeling language on a PC AMD-Xeon 4 processors
3 GHz, 8 GB RAM with Linux Ubuntu 4.03 OS. With these input data, the
mathematical program has the order of 270,000 constraints and 150,000 vari-
ables, after pre-processing. In the pre-processing phase about 160,000 constraints
and 200,000 variables are eliminated. Given the size of the instances, we accept
good solutions within an optimality gap of 1%. The gap of the solution is listed
in the fourth column of Table 1. To solve these instances, we also took advantage
of the CPLEX’s capabilities of generating constraints (cuts) based on polyhedral
considerations. In particular, we enable moderate generation of clique cuts, set-
ting the corresponding parameter to 1. The number of additional cuts of clique,
implied bound (Bound) and Gomory type are listed in the fifth, sixth and sev-
enth column of Table 1 respectively. Finally, in the last column, we report the
value of the objective function with the intention to provide a clue on the amount
of delay assigned.

What immediately appears from the computational results is that CPLEX
can compute good solution, if not optimal, in all the cases. The average solution
time is 241 seconds. In only one case, the instance with 50% of connections and
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Table 1. Computational results

Solution
% of Conn.s Capacity Time GAP CUTS Iter.s O.F.
(# of Flights) (secs.) (%) Clique Bound Gomory value

3 Infeasible
4 167.0 0.66 1551 394 46 143528 2972.3
5 352.2 0.28 2483 486 47 143763 2677.2
10 225.1 0.45 3340 537 50 142399 1853.8

50 20 383.4 0.21 3700 510 57 135670 949.5
(3003) 30 724.2 0.49 2046 513 68 130214 409.8

40 382.0 0.28 852 292 50 124178 164.3
50 116.1 0.00 1133 297 34 120932 129.0
60 161.3 0.00 1231 358 36 120613 123.9
70 213.5 0.00 1276 360 37 120417 123.1
6 Infeasible
7 194.5 0.61 1050 311 37 144194 2883.3
10 215.7 0.63 2014 406 45 142092 2381.4

60 20 207.3 0.72 2420 358 43 134586 1471.9
(3027) 30 480.9 0.02 2308 476 38 133793 829.5

40 390.8 0.00 2381 528 54 128156 455.4
50 191.3 0.00 1936 448 61 123506 342.5
60 213.4 0.41 2354 450 59 121359 297.6
70 204.4 0.40 2404 452 57 120385 280.1
10 Infeasible
11 194.8 0.06 - - 6 152028 3554.1
12 139.0 0.17 - - - 147699 3357.3
15 106.4 0.08 - - - 141554 2857.6

70 20 125.8 0.02 - - 6 142124 2303.3
(3140) 30 76.6 0.00 - - - 136489 1487.1

40 177.3 0.57 - - 11 135555 949.8
50 109.4 0.20 - - 10 127251 688.2
60 42.7 0.00 - - - 124369 612.8
70 42.8 0.00 - - - 123612 567.0
11 Infeasible
12 196.4 0.16 1284 331 48 157695 3080.7
15 248.3 0.04 1341 320 39 153471 2638.3

80 20 271.6 0.00 2169 409 48 153777 2149.6
(3240) 30 368.7 0.00 2039 393 45 146618 1398.6

40 326.5 0.47 1891 486 51 144897 930.0
50 203.9 0.00 1148 443 46 139034 660.2
60 237.6 0.98 1458 318 32 136602 564.7
70 148.9 0.72 1130 296 32 133049 517.5
14 Infeasible
15 235.7 0.99 2320 421 49 155881 2947.0

90 20 303.7 0.02 2694 523 43 150234 2325.9
(3196) 30 266.5 0.56 2374 440 55 148645 1581.0

40 327.6 0.75 1500 496 55 143615 1105.8
50 380.4 0.40 2461 436 62 138366 862.8
60 220.6 0.00 2512 395 51 134305 745.9
70 307.7 0.04 982 351 52 134156 695.2
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30 flights per period of capacity, the solution time is larger than 10 minutes. This
is also the only instance for which the algorithm branched (68 nodes) in order
to compute the solution within the optimality tolerance. On average instances
with 50% of flight connections require longer computational time. This trend
is explained by the larger number of symmetries that this set of instances may
have, i.e., between flights flying the same o-d pair at the same time. On the
other side, the set of instances that shows better computational performances
is the set with 70% of flight connections. This set exhibits by far the smallest
computational time.

Moreover, the computational performances of the mathematical model do not
degrade as we consider instances close to the “infeasibility border”, as experi-
enced in [10] for instance.

3.2 National Size Instances

The instances of “national” size consider 30 airports, 10 of which are hubs, 145
sectors and 22 time periods. All the instances manage 6475 flights with 5180
connections (80%). For these instances the nominal capacity of the sector is set
to 130 flights per period. The capacity of sectors affected by the bad weather
front is here reported in percentage of the nominal capacity (first column of
Table 2).

To solve these instances we use the same setting for the CPLEX parameters as
in the regional case. In addition, a time limit of 3,600 seconds is imposed. With
these input data, the mathematical program has the order of 570,000 constraints
and 305,000 variables, after pre-processing. In the pre-processing phase about
280,000 constraints and 340,000 variables are eliminated (fixed).

For this set of instances the average computational time to provide a solution
within 1% is 987 secs. The median value is much smaller, equal to 710 secs.
Indeed, in one case, that is the instance with the effective capacity equal to

Table 2. Nation wide instances

Capacity O.F. Solution Time CUTS Iter.s GAP
(%) value (secs.) Clique Bound Gomory (%)
0 Infeasible
10 2620 891 14879 3664 55 266454 0.09
20 1672 643 11424 2917 32 256845 0.00
30 1108 988 7739 2356 60 244400 0.75
40 693 836 7920 1951 63 238985 0.00
50∗ 414 3600 5458 1743 67 242378 1.05
60 265 631 6232 1487 53 231241 0.00
70 154 889 5585 1151 77 227936 0.99
80 74 694 3632 1178 74 226179 0.00
90 23 710 5355 1009 69 221224 0.00
100 12 437 1346 707 65 218378 0.00
∗ 332 Branch-and-Bound nodes have been generated
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50% of its nominal value, the algorithm can’t compute a good solution with
1% optimality gap within the time limit of 3600 secs. This is also the only
case in which the algorithm requires the branching phase, exploring 332 branch-
and-bound nodes during its execution. However, accepting a larger optimality
tolerance, say 3%, then the algorithm computes a good solution in 569 secs. The
other statistics for this solution are as follows: objective function value of the
solution is 417 with an optimality gap of 2.58. During the pre-processing phase
5458 cuts of clique type, 1693 of implied bound-type and 67 of Gomory-type are
added. For all the instances the statistics are listed in Table 2.

To evaluate the effect of rerouting, we compare the solutions of the ATFM
model with and without rerouting respectively. When sectors’ capacity is close to
the nominal value the difference between the two solutions is rather small, both
in terms of ground and airborne holding delay. But, as the sectors’ capacity
decreases, the benefits of rerouting increase, in terms of smaller amounts of
both ground and airborne holding delay assigned. In the most congested case,
capacity equal to 10% of its nominal value, the reduction of ground delay is
almost 30% (from 949 to 733 time units). The airborne holding delays decrease
as well, dropping from 150 time units to 126 with an improvement of 19%. It is
important to note that such a benefit is gained with a small amount of rerouting
actions. Even in the most congested case, the number of rerouted flights (220)
is rather small, which corresponds to 3.4% of the total flights.

4 Conclusions

In this paper, we presented a new mathematical model for the Air Traffic Flow
Management problem. The key feature of the model is that it also includes
rerouting decisions and they are are formulated in a very compact way. In fact, it
does not require any additional variable, but it only introduces new constraints,
which implements local routing conditions. We also presented three classes of
valid inequalities with the scope of strengthening the polyhedral structure of the
underlying relaxation.

A wide computational analysis on realistic instances demonstrated the viabil-
ity of the proposed model. We solved realistic instances of the problem in short
computational times, which are consistent with the decision process inside the
ATFM Central Unit. Given that our approach includes all the air traffic control
decisions (ground holding, air holding, adjusting speed of aircraft and rerouting)
combined with the attractive computational times, makes us optimistic that this
approach may succeed in becoming the main air traffic control engine.
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